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FOREWORD

This research was conducted for the Office of the Chief of Engineers (OCE) under project
4A161102AT23, "Basic Research in Military Construction"; Work Unit NN-E30, "Wave Structure
Interactions."

This research summarizes research results-of the Ph.D. dissertation-A Finite Difference Numerical
Modelfor the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors-Over Hard and Porous
Surfaces, University of Illinois, Urbana-Champaign, 1990, which details research performed for the
Environmental Division (EN) of the U.S. Army Construction Engineering Research Laboratory
(USACERL). The University of Illinois thesis advisor was Dr. Richard Raspet. Dr. Edward W. Novak
is Acting Chief, USACERL-EN. The USACERL technical editor was Mr. William J. Wolfe, Information
Management Office.

COL Everett R. Thomas is Commander and Director of USACERL, and Dr. L.R. Shaffer is
Technical Director.
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MODELING NONLINEAR ACOUSTICAL BLAST
WAVES-OUTDOORS: A RESEARCH SUMMARY

1 INTRODUCTION

Background

The measurement and characterization of the impulse noise from blasts are critical to predicting the
environmental impacts of military operations. One-must take measurements close enough to a-source to
eliminate meteorological variations,-but far enough away so that finite- amplitude (nonline.:r) wave effects
do not dominate. In most cases, these measurements are made over iatural outdoor surfaces. The effects
of the finite impedance ofthe ground on the propagation of linear continuous waves d-e profound.

The techniques for predicting sound propagation outdoors usiag the infinitesimal pressure iamplitude
assumption, linear acoustic methods, are well established. The fast field program (the FFP)l and the
parabolic equation method (PE method)2 are the most prevalent computational approaches using ,he linear
theory. However, these methods do not accurately model the physics of very loud sounds (over 150 dB),
where the amplitudes of the pressure -variations making up the sound become finite iinstead of infinitesimal,
and the mathematics governing the sound propagation become nonlinear.

It is important to determine whether it is possible to model such loud sounds, such as the acoustic
pulses from blasts. A computer model that simulates nonlinear blasts would allow researcher, to better
predict the impact of noise on communities surrounding Army training ranges. In addition, understanding
the relation between very loud acoustic pulses and natural ground surfaces should aid in the irtepretation
of results from linear propagation prediction schemes.

Objectives

This report summarizes research conducted to: (1) deveop and test a numerical algorithm that could
be used to model nonlinear acoustical blast waves, and (2) investigate the complicated relationship
between nonlinear blast waves and natural ground surfatues for the purpose of sound propagatior

S I Frank and G W. Swenson, Jr., "A Brief Tutorial on the Fast Field Program (FFP) as Applied to Sound Propagation in the
Air," Applied Acoustics, No. 27 (1989), pp 203-216; S.W. Lee, N. Bong, W.F. Richards, anj Richard Raspet, "Impedance
Formulation of the Fast Field Program for AcousticWave Propagation in the Atmosphere," Journal of the Acoustical Society
of America, No. 79 (1986), pp 628-634; Richard Raspet et al., "A Fast Field Program for Sotnd Propagation in a Layered
Atmosphere Above an Impedance Ground," Journal of the Acoustical Society of America, No. 77 (1985), pp 345-352.

2 Kenneth E Gilbert and Michael J. White, "Application of th. Parabolic Equation to Sound Propagation in a- Refracting
Atmosphere," Journal of the Acoustical Society of America, No. 85 (1989), pp 630-637; Michael J. White and Kenneth E.
Gilbert, "Application of the Parabolic -Equation to the Outdoor Propagation of Sound," Applied Acoustics, No. 27 (1989), pp
227-238.
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prediction. The complete investigation is detailed in USACERL Technical Manuscript N-91/23.3

Approach

A mathematical analysis determined the-proper numerical algorithm to correctly model the nonlinear
acoustical blast waves. The numerical algorithm was implemented in a computer simulation, the results
of which verified the algorithm. The simulation also provided numerical results for further investigation
into the relationship between the nonlinear blast waves and the natural outdoor ground surfaes.

3 Victor W Sparrow, A Pinite Difference Numerical Model for the Propogation of Finite Amplitude Acoustical Blast Waves
Outdoors Over Hard and Porous Surfaces, TM N-91,23 (U.S. Army Construction Enginering Research Laboratory
[USACERL], July 1991).
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2 METHODOLOGY

One cannot apply frequenc) domain analysis to the simulation of finite amplitude sound outdoors.
The equations governing finite amplitude acoustic propagaion are nonlinear, and thus require a-time-
domain solution. Furthermore, if the outdoor propagation is bounded by a porous mediumsuch-as the
ground, the ground surface must be modeled in the time domain to couple to the air solution as well.

The numerical simulations de, eloped in this research-to model finite amplitude propagation outdoors
use the method of finite differences to solve an initial-boundary value problem. A region in space is
defined with boundaries in which the propagation ecuations are solved by specifying the region at a given
time, and then by solving numerically for values in the region at future times.

Air Numerical Solution

The equations to model the finite amplitude acoustic propagation in the air (Eq 4.1 to 4.5)' involve
the fcl:jwing acoustic variables: density, particle velocity, pressure, entropy, and temperature. This
differs from linear sound propagation studies in %hich only one acoustic variable is used, usually pressure.

The equations include the effects of classical dissipation, a bulk viscosity, and all the secopd-order
nonlinear terms which give rise to the finite amplitude behaviur. The classical dissipation effects are heat
conduction and shear viscosity, %hich for outdoor propagation ,,c substantial but not the most significant
contributors to attenuation of acoustic signals. The bulk viscosity enters the equations to account for high
frequency relaxation effects. In this research, the bulk viscosity was increased appropriately to
approximate the dominant absorption effects of oxygen and nitrogen relaxation in air.

Assuming a homogeneous atmosphere, it is possible to rewrite the equations in a form where only
one time derivative exists in each equation (Eq 4.34 to 4.38). These manipulated equations are valid for
amplitudes approaching the linear acoustic limit, while still accounting for all the dissipation and second-
order nonlinear terms.

The manipulated equations itm solved by a highly accurate finite difference method, a second-order
in time and fourth-order in space MacCormack scheme.5 Finding this method and applying it to the
equations of acoustics was one of the breakthroughs in this research. The details of this method are again
relegated to the thesis reported in USACERL TM N-91/23.

One additional enhancement (a fourth-order artificial viscosity) was made. to the numerical solution
to the air equations, which significantly improves the MacCormack results. A fundamental property of
nonlinear interactions is that high frequency energy is created at the expense of the low frequencies.
However, such high frequencies can be so high that the finite difference grid cannot resolve the
frequencies well, and the numerical method becomes inaccurate. The additional artificial viscosity has

Al' equation citations refcr to Victor W. Sparrow, A Finite Difference Numerical Model for the Propagation of Fiute Amiphtude
Acoustical Blast Waves Over liard and Porous Surfaces.

5 David Gottlieb and Eli Turkel, "Dissipative Two-Four Methods for Time Dependent Problems," Mathematical Comnputation,

No. 30 (1976), pp 703-723.
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a frequency dependance of omega :o the fourth power and will dissipate very high frequency energy, while
leaving the lower frequencies of interest unaffected.

Porous Ground Numerical Solution

The equations used to simulate a porous ground surface (Eq 5.12 to 5.14) use Attenborough's
notation6 and are der;ved under a low frequenc) assumption. The equations contain the parameters of
porosity, flow resistance, and an effective density or structure factor, which Attenborough relates to the
tortuosity.

The local reaction assumption is inhereptly built into this model of the porous ground surface. All
propagation is assumed to be normal to the surface of the flat ground. One may visualize this as a porous
medium made of cylindrical soda straws lined up to form the ground surface.

An analysis was performed to study the properties of this simulated porous medium. "Ale medium
exhibits a finite impedance vith equal real and imaginary parts that decrease with increasing frequency,
and an effective sound speed and absorption coefficient that increase with increasing frequency. These
trends and the values are similar to those reported in measurements of real outdoor surfaces.

A second-order MacCormack finite difference solution, similar to that for the air equations, was used
to solve these porous ground equations numerically. This method revealed a stability restriction on the
size of the time step relative to the porosity, the flow resistance, and the structure factor. If the chosen
time step was too large, the numerical method would become unstable.

Because the speed of sound in the pores of the ground is on the order of one-tenth of that same speed
in air, the finite difference grid for the ground must be 10 times finer than for the air grid. An
interpolation algorithm was used to interface the coarse air grid and the fine ground grid.

Initial Conditions

This research is primarily concerned with the simulation of impulsive-type sound sources. Therefore,
as an initial condition, a pulse shape appropriate for a blast %&as used. This waveform is given in terms
of acoustic pressure. From the acoustic pressure, it was possible to find a spherical potential and the other
acoustic variables needed for an initial condition to the air propagation equations. The initial field was
always assumed to be zero in the porous ground.

Using experimental data, appropriate pulse durations for various peak sound pressure levels were
found by using scaling laws. These scaling laws are useful to derive rough approximations, but not to
explicitly account for the absorption of the air or for ground impedance. By using the scaling laws, it was
possible to take the blast data and find initial conditions for the sounds from an electric spark discharge.

' Keith Attenboriunh, "Acoustkal Charactcristiks of Porous Matcrial," Journal of the Acoustial Soc-icty of Arnalca, No. 82
(1982),-pp 179-227.
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Su,.h a spark pulse ,as used instead of the blast waves for much of the verification of the algorithms for
the numerical solutions.

Absorbing Boundary Conditions

The solution to the acoustical equations in this research is restricted to a finite domain because of
limited computer memor). Since the outdoor environment is unbounded, an absorbing boundary condition
was used to truncate the computational region while simulating an unbounded medium.

9



3 RESULTS

Algorithm Verifications

Several different types of tests were performed to validate -the numerical model. The numerical
solution was compared to the results of the Pestorius algorithm' for one-dimensional propagation of
electric spark pulses in the free field. The Pestorius algorithm is another finite-amplitude acoustical-

-computer simulation method -valid only for specific situations. There was close agreement between the
two methods.

A second comparison was made for normal incidence of a spark pulse on a hard surface. In this case,
the finite difference method was compared to an analytic result of Pfrieim for the pressure amplification
at the hard surface as a function of the free-field incident peak pressure. Again, the agreement was good.

A third verification %as based on the electric spark pulses reflecting obliquely from a hard surface.
No prior computational or analytic results exist for this comparison. In this case, plots of pressure
amplification near the hard surface versus incident angle turned out to be similar to such curves for blast
data on a larger scale. These results do agree qualitatively % ith what is expected from physical arguments.

Blast Predictions

To use thz..: numerical methods tc investigate the interaction of blast waves with a natural outdoor
surface, three types of regular runs were made. a run in the free field, a run with a hard surface, and a
run for a particular porous surface. The chosen porous surface had a flow resistance of 300,000 mks
Rayls, a porosity of 0.3, and a tortuosity of 1.5. The three types of runs were compared.

Two groups of simulations were performed. The first group of simulations involved a fi.. :d charge
%eight where the height of the charge ,iaried. This fixed weight would produce a peak sound pressure
le%,el of 180 dB, 30 m from the source. Curves of pressure amplification near the hard and porous ground
as a function of incident angle were obtained from the runs. These plots were similar to the curves in the
literature that are based on experimental observations

The sconJ group of simulations involved keeping the geometr, fixed, and the blast charge height
at I m while changing the charge weight. Here the peak sound pressure levels 30 in from the source were
180, 174, 168, 162, 156, and 150 dB. Numerical receivers were placed at heights of zero, 1. 2, and 5 in

Hem) E. Bass. Jean Ezrc, and RiharJ Raspet. "EffctL of Vibrational Rclaxation on thde Rise Tunes of Sho-.k Waves in the
Atmosphere," Journal of the Acoustical Socidy of America, No. 74 (1983). pp 1514-1517.
David T. Blackstone., "Nonlinear Acoustics ('heorcfical);" AlP llandboo. 3d ed. (McGraw,-Hill, N.Y.. 1972), pp 3-23.
S. Gladstone.. ed.. The Effects of uilear Weapons. rev. ed. (U.S. Atomic. Energy Comm.sion, April 1962). p 147, Gilbert
F. Kinney and Kenneth . Graham, Explosive Shocks in Air, 2d ed. (Springer Verlag. N.Y.. 1985). p 82, C.W. Heaps.
K.S. Fansler, and E.M. Schmiut, "Computer Implementation of a Mulule Blast Predi.uion TctImqu.," The- SIAMkgnid I',braton
Bullej, No. 56 (Shock and Vibration Information Center, Naval Rcscar6 Laboratour, Washington DC. August 19861.
pp 213-228.
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and distances of 30, 45, 60, 90, 120, 180, 240, 360, 480, 720, and 960 m from the source, to monitor the
passage of the blast waves.

The propagation results over the hard surface showed that the peak .ound pressure levels decayed at
nearly the rate of r w', ,hich agrees with the work of Reed'0 for weak sh,,cks in the far field of a strong
blast. Htow,.cr, for thc porous ground surface, a different trend was fou-id. At lower amplitudes, the
peak sound pressure le% cls fell off faster than over hard surfaces, which would .. expected for propagation
over a porous medium in the linear acoustic limit. This phenomenon is callea -xcess attenuation. At
higher amplitudes, the peak level decay rate was less than the decay rate over the ,.,rd surface. These
runs showed that the finite amplitude nonlinear effects of the higher amplitude blasts ai. 1 kely, thereby
de.reasing the finite impedance effects of the natural ground surface. This is an important interaction not
predicted by linear theory propagation programs.

Jxk W Rccd. " pAtmusseric Atzenu ion of Exposion Waves Jourda of t- Aco'u0cdSoeazy of Anrn .ca. No. 61 (197").
rpp 3 9 4 7 .
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4 CONCLUSIONS

This study developed a numerical method to model the nonlinear acoustical blast waves, and verified
the method's performance. The method was a second-order in time and fourth-order-in space version of
the MacCormack finite difference scheme, which included a fourth-order artificial viscosity. The
algorithm is stable and seems adaptable for a wide variety of nonlinear acoustics studies. In addition,
absorbing boundary conditions were developed to allow for a numerical solution on a relatively small
computational domain.

An investigation of the interaction between the finite amplitude blast waves and a natural ground
surface determined that, as the finite amplitude effects are increased, the effect of a finite -ground
impedance is decreased. This relationship is nonlinear, and implies that the results of sound propagation
and noise mitigation studies, based on any peak sound pressure levels over 156 dB and involving surface
reflection, should also be nonlinear. This nonlinear relationship also implies that the practice- of simply
adding finite amplitude effects and ground surface effects to- find sound levels is not valid.

Furthermore, in outdoor propagation studies, most finite amplitude effects -occur near the sound
source. Any data obtained 100 m from the source and subsequently referenced -back to 1 m from the
source, cannot be valid i! the peak level at 1 m is over 156 dB. For blasts, the approximate method to
perform such spatial extrapolations is-to use the scaling laws. Linear extrapolations and techniques should
be used only when linear acoustics are valid.
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